
(Refer Slide Time: 22:14)

Now, basically what are the instruction types? So, basically even if you have look at the C

program what do you have? You declare some variables, then you do some addition,

multiplication, subtraction and you have loops. So, basically and some standard printf and scanf

statement. So, basically no code can have anything other than this that is data transfer

instructions, arithmetic and logical instructions and basically control instructions. So,

whenever you say scanf, storef and storing some variables basically they are nothing but data

transfer operation you get the value of the data from the memory, then arithmetic and logical

instruction; that is the most important one like you do add subtract multiply etcetera and control

like you have loops. If, then, for, while etcetera that they fall under the category of control

instruction. So, instructions are basically only of this three and we can play around with it

having different formats or different variations of them like for example, what is the data

transfer instruction in case of a architecture basically you transfer data from one memory

location to other one so memory location can be a register, another memory location, a register

to another memory location, a register to register etcetera. So, any memory to any memory

transfer is a data transfer operation like for example, if I say LOAD 𝑅1, 3030.

It means it will take the value whatever is available in memory location 3030 and it will put in

register number one, this is a two address instruction and what is it. Even you can have a single

instruction like we can say LOAD 3030 h. So, what it will mean in this case I have not specified

any register means its de facto standard is the accumulator. So, we stored the value whatever

is available in memory location 3030 into the accumulator.

325

(Refer Slide Time: 23:55)

Arithmetic and logic instructions as I told you they are the basic mathematics we do like ADD

𝑅1 3030, that is add the value of 3030 memory location to register one and store in register two

this is a two address instruction this is again see not one. So, this is basically a logical

instruction that will negate the bits of the number stored in register 𝑅1.

(Refer Slide Time: 24:19)

So, generally this is a logical instruction and many most of the logical instructions, basically if

you see will have a single one address instruction. So, it’s not a very standard rule but generally.

326

Generally not then you can say not, negate all those things basically then shift which is a left

shift, right shift.

So, generally they have a single operand. So, single address basically then, but not all basically

sometimes we can have bitwise AND, bitwise OR ok. So, in that case this is also a logical

operation, but in that case they will have two addresses, but what I what I mean to say that

single operand instruction or single address instructions are mainly type of logical instructions.

But, there can there are many logical instructions which have two operands like and of two

numbers bitwise ok. Then next is very important instruction, because most of the code will

have lot of logic logics; that means lot of logical or control that is if this happens you go to this

if this happens you go back etcetera.

So, very important means you change the flow, that is it never happens that you execute step

1, step 2, step 3 and done. Basically at many steps we will check if this has been the condition

I want to do this else I want to do that that is; why that is the idea of a code. The code takes

instructions based on something either you will execute this or execute that.

So, that is why actually there are control instructions at the heart of any programming. So,

generally here in this case also main memory we will find that they are single address

instructions like jump 3030. So, what it tells that unconditionally whatever happens you jump

to the instruction which is in memory location 3030. So, generally what happens if I say add

3030 hex?

So, what is that mean it will mean that whatever value is available at 3030 add with 𝑅1 and

store back in 𝑅1 sorry accumulator, because it’s a single address instruction, but when I say

jump 3030. In that case what happen it is telling that the instruction available in 3030 has to be

executed. So, if you take this scenario. So, in this case 3030 is having a instruction to be

executed; and if you take this scenario. So, in case the memory location is 3030 has a data. So,

as I told you this is a Von Neumann architecture. So, any place can have a data any place can

have an instruction like, now there can be some conditional instruction it is saying that jump

on 0, 3030; that means, but whenever there is a conditional instruction before that some other

instructions has been executed based on which it has been done like for example, you can say

that SUB 3030.

327

So, what does it mean it will mean you will take the memory location data 3030, whatever is

available in the accumulator subtract it and store the value in the accumulator, but whenever

such operations are done there are some flags there is the flag register.

So, that will be set there is a zero flag nonzero flag. So, whenever we will come to that we will

read about it and also Professor Deka might have also has discussed something of some

elaboration on the flags. So, whenever some mathematical operations are done or logical

operations are done some flags are set, like 0 is a well known flag carry is a well known flag.

So, some flags are set or reset. So, if you subtract the value of whatever was present in the

accumulator with whatever value was present in 3030, if the answer is 0. So, zero flag will be

set otherwise 0 flag will not be set. So, that means say we want to say that if the memory

location value of 3030 and the value of the accumulator are equal, then I want to go to sorry I

should not call it 3030. There is a confusion let me call it 3000.

(Refer Slide Time: 27:48)

Ok so, 30 memory location 3000 has a variable the location of a variable which has some value.

So, I want to check whether this value is equal to the value available in the accumulator if those

two values are equal, then I will jump to the instruction which is lying in the memory location

3030.

So, in this scenario 3030 is having a instruction and memory location 3000 3000 hex is

basically having a data. So, I compare this data with the accumulator; if they are equal then

328

what I am going to do is that; I am going execute the instruction which is available in 3030.

So, this is the instruction jump on 0.

So, that is the control instruction. So, what it does, but before that generally I should have done

an instruction which is set my zero flag. So, suppose I have done SUB 3030 hex. So, if these

two numbers are equal, then zero flag will be set; then when I am executing the instruction

jump on 0 to 3030 it will check whether the zero flag is set, if the zero flag is set it will go to

the memory location 3030 execute the instruction there or it will continue from where the

previous instruction was there; that means, it will not jump to 3030 rather increment the

program counter and going. So, therefore, these are actually basically control instructions.

Very very important there are two types jump conditional and unconditional control,

unconditional means whatever be the case you go to that; that is, I mean what do I say that

memory take the instruction there and execute it, conditional means basically it will depend on

certain conditions, how the conditions are set. Based on some operation some flag values are

set and based on those flag values it will take. So, I have given you an example.

(Refer Slide Time: 29:27)

Now, again as I told you three address two address one address and zero address that is how

many operands are there? So, this is the three address instruction format. So, 𝑅1 30 hex so as

I told you in this case additions are all different type.

329

(Refer Slide Time: 29:33)

So, you it is saying that whatever the value of memory location available in 3030; add with the

immediate value 5 and store the result in 𝑅1. So, this is a special type of an instruction means

similar addition compared to this add instruction 𝑅1 3030 hex and say 3031 hex. So, the first

one we will tell that whatever available over 30 whatever available at this.

These two instructions has to be a variables has to be added and put the result in 𝑅1. In fact, if

you observe this instruction size may be quite large maybe 10 bits here 5 bits here this is 8, 16

16. So, you can understand that if you have an instruction which is the add 𝑅1 and two memory

location which is quite larger may be compared to this, because in this case 5 is an integer and

the integer may be around 16 bits or something I can I can I may not keep it as a 16 bit is size

of this immediate range. I can think that the number or range of the numbers which are put in

immediate values. So, I can restrict it to 8 bits that is 28 my; it’s my decision or my format of

design. So, I keep it.

So, what I want to say that? It not only the adds add instructions can be vary in the way it

functions, but it can also vary in length like if I say that add 𝑅1 and the two memory locations

if length is 10 + 5 + 16 + 16 bits, but here the immediate I can restrict not to 16 bits, because

in this case it’s a memory location memory address size here it’s the range of number I want

to give, I can even give it 32 bits making it longer, because I can get a very large precision

number. So, I can keep it to be 32. So, in other words what I mean to say is that a same

instruction same address instruction like three address, two address given any address

330

instruction format the length may also vary and the way the same operation like add it may also

vary. So, therefore, this opcode and this opcode will vary. So, therefore, the number of types

of adds the number substrates type of subtraction also varies in nature and also the opcodes

will be different. So, therefore, we require such number of this one.

So, now again coming back to the story the basic format of three address instruction is that

there will be opcode destination source and source sometimes this can be source as well as the

destination. That means you again take this source 1, source 2, this can be source 3 and you

write back the value of the destination problem is quite long, read multiple words in the

memory as I told you, multiple operand fetches that is 3 operands means 3 times we have to

talk to the memory to get the value and for a single instruction you have to read different

locations in the memory, join them get the instruction totally long instruction you have to you

know the instruction to be split in two memory locations you have bring them and join them

and so forth; however, the number of instruction less required to execute is less because in one

instruction we are able to do much more operation. 2 instruction format is the most widely

accepted.

(Refer Slide Time: 32:33)

So, it is it says that opcode source source; that means, what happen is that sometimes actually

like as I showed you ADD 𝑅1, 𝑅2 that means it says that; whatever is the value of 𝑅1 value of

𝑅2 you have to add to 𝑅1 and store back. So, this one is both are source as well as the

destination. So, that is what has been stored over there.

331

So, generally the first one, generally one of the operand generally the first one corresponds to

both source and result they already have here is the source as well as a destination and this is

generally the source. So, so it can be the store it can have the memory location it can also be

immediate, but for all these cases the opcode will change and there variants of ADD. So, this

is one example where it says that 𝑅1, 3030; that means, the value of memory location 3030 is

to be added to 𝑅1 and is stored back to 𝑅1. So, in this case this is both a source and a destination,

but in this case as I told you. So, generally speaking is a destination generally, they will add

these two numbers and give the value to 𝑅1. But for many cases sometimes this was also used

as a source, but that is more real. In two instruction format generally this is a source as well as

the destination, but in this three case in this three address case generally, this was a destination

itself. People does not add this plus this plus the value of this and store back there, but for many

cases many instruction formats or many machine architecture this was a source as well as

destination.

But; that was less popular this format is was more popular. What was the more format popular

format that is these two are the sources and this one is the distinction, but in two address the

source as well as the destination.

(Refer Slide Time: 34:15)

Then one address in this case as I told you one is a de facto standard is the accumulator; that

means, whenever I say add 3030, if nothing is mentioned, that is a register which is the

accumulator so it’s easier to write this instruction size is small and the effect is also similar to

332

a two address format, because in that case also you have to explicitly mention the register, but

in this case you may not be able it is not required to explicitly maintain mention the register

name. So, instruction sizes are less that is the case.

(Refer Slide Time: 34:44)

But one thing you have to understand that as more and more you make the instruction sizes

smaller more number of instruction will be required to execute a simple code or a single or a

given code and more number of operands or more number of addresses you put it less number

of instructions will require will be required to solve this same problem or the same code there

is obvious basically, but the theory is that more longer you make the instruction hardware is

more complex decoding fetching is more complex and therefore, the modern trend is towards

simple instructions and execute them faster and as I told you the last instruction format is 0

address format, in zero address format basically only the operation is specified, but a de facto

standard is that you have a stack with it.

So, if I say add. So, what it will do? It will pop up the two locations and add the result and

write it back. So, basically you have the you have to have the extra headache of a stack, but in

fact, there are many other ways this is zero address format is a stack comes that is the problem,

but again the instruction sizes are small, but this zero address instruction has lot of rules in the

system or handling the internals of a CPU execution like, the program counter. Whenever you

execute a procedure or whenever you want to jump from one memory location to other or you

have to execute what do I say a interrupt.

333

So, in that case what happens? Basically, you have to store back store the old programs status

word old value pc old value of register. So, that whenever after execution the interrupt service

routine or the procedure you have to come back we have to get the value. So, where these

values are stored; so, they are basically stored in the stack and depending on the return and

come back if we pop up the values and use them and before going to service the interrupt you

have to store that in the stack.

So, there is a de facto stack always available in the CPU. So, generally you can always use the

same stack or a part of the stack or the same architecture for zero address instruction. Now,

before we close down let us see a very practical example. So, this is a code I am not written the

code. So, let us say that I want to add A + B + C + D and subtract by this one.

(Refer Slide Time: 36:38)

So, we are taking the architecture three address instructions in this case and in this case we are

taking say that say add this is the destination and these two are the sources. We are not

considering the cases that is the source or destination together we have taken the case that this

is a destination only right. So, in this case so, some of so, first instruction is ADD H, A, B.

So, value of A and B are added and stored in C next instruction is ADD I, C, D. So, value of

C, D is added and stored in I then you say that multiply H, I. So, this one is actually now H and

this is I. So, this one is done. So, whole thing this is computed as G now you take this. So, in

this case you are subtracting F and G. So, if subtract F, G the value will be stored in K.

334

Now, you say MUL multiplication of K this is your K. So, this is where K is stored. So, you

take K and multiply E and store it in L. So, this part is basically now L and then you have to

divide J and L. So, J and L you have to divide and you have to store back the value in M. So,

finally, it is 2; so, how many instructions 1, 2, 3, 4, 5, 6. So, six instructions actually solves the

whole problem for you 1, 2, 3, 4, 5, 6 done.

(Refer Slide Time: 38:03)

Now, next two address. So, in this case as I told you this is both the sorry; this source as well

as destination and this is the source. So, now, what we are doing ADD A, B. So, the value of

A and B are added and stored in A. Then C, D ADD C, D value of C, D and store it in C. So,

now, this one is A this one is C.

Now, you say that F - G some multi you can do the multiplication A and C you multiply these

two; now this whole thing becomes a simple the subtract F - G. So, this one will now become

F, then you multiply E and F you multiply these two then this whole thing will become your E

and then finally, you add A and E and the store the value.

So, A and E we are added and the value will be stored in A. So, now, this is your final answer,

very interestingly how many instructions are required if you look at this very easy to

understand.

335

